Problem9943--ABC312 —— G - Avoid Straight Line

9943: ABC312 —— G - Avoid Straight Line

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a tree with $N$ vertices. The vertices are numbered from $1$ through $N$, and the $i$-th edge connects vertex $A_i$ and vertex $B_i$.  
Find the number of tuples of integers $(i,j,k)$ such that:

-   $1 \leq i < j < k \leq N$; and
-   the given tree does not contain a simple path that contains all of vertices $i$, $j$, and $k$.

Input

The input is given from Standard Input in the following format:

```
$N$
$A_1$ $B_1$
$\vdots$
$A_{N-1}$ $B_{N-1}$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i, B_i \leq N$
-   The given graph is a tree.
-   All input values are integers.

Sample 1 Input

5
1 2
2 3
2 4
1 5

Sample 1 Output

2
Two tuples satisfy the conditions: (i,j,k)=(1,3,4),(3,4,5).

Sample 2 Input

6
1 2
2 3
3 4
4 5
5 6

Sample 2 Output

0

Sample 3 Input

12
1 6
3 4
10 4
5 9
3 1
2 3
7 2
2 12
1 5
6 8
4 11

Sample 3 Output

91

Source/Category