Problem9908--ABC309 —— Ex - Simple Path Counting Problem

9908: ABC309 —— Ex - Simple Path Counting Problem

[Creator : ]
Time Limit : 4.000 sec  Memory Limit : 512 MiB

Description

We have a grid with $N$ rows and $M$ columns. We denote by $(i,j)$ the cell in the $i$-th row from the top and $j$-th column from the left.

You are given integer sequences $A=(A_1,A_2,\dots,A_K)$ and $B=(B_1,B_2,\dots,B_L)$ of lengths $K$ and $L$, respectively.

Find the sum, modulo $998244353$, of the answers to the following question over all integer pairs $(i,j)$ such that $1 \le i \le K$ and $1 \le j \le L$.

-   A piece is initially placed at $(1,A_i)$. How many paths are there to take it to $(N,B_j)$ by repeating the following move $(N-1)$ times?
    -   Let $(p,q)$ be the piece's current cell. Move it to $(p+1,q-1),(p+1,q)$, or $(p+1,q+1)$, without moving it outside the grid.

Input

The input is given from Standard Input in the following format:

```
$N$ $M$ $K$ $L$
$A_1$ $A_2$ $\dots$ $A_K$
$B_1$ $B_2$ $\dots$ $B_L$
```

Output

Print the answer.

Constraints

-   $1 \le N \le 10^9$
-   $1 \le M,K,L \le 10^5$
-   $1 \le A_i,B_j \le M$

Sample 1 Input

3 4 1 2
1
1 2

Sample 1 Output

4
For (i,j)=(1,1), the following two paths are possible:
  • (1,1)→(2,1)→(3,1)
  • (1,1)→(2,2)→(3,1)
For (i,j)=(1,2), the following two paths are possible:
  • (1,1)→(2,1)→(3,2)
  • (1,1)→(2,2)→(3,2)
Thus, the answer is 2+2=4.

Sample 2 Input

5 8 4 5
3 1 4 1
2 7 1 8 2

Sample 2 Output

137

Sample 3 Input

883671387 87719 10 12
86879 64174 47274 41688 17713 50897 53989 7210 30894 5714
60358 28835 48036 48450 67149 36558 35929 69025 77539 19195 60762 60721

Sample 3 Output

941873621

Source/Category