Problem9855--ABC303 —— Ex - Constrained Tree Degree

9855: ABC303 —— Ex - Constrained Tree Degree

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given an integer $N$ and a set $S=\lbrace S_1,S_2,\ldots,S_K\rbrace$ consisting of integers between $1$ and $N-1$.

Find the number, modulo $998244353$, of trees $T$ with $N$ vertices numbered $1$ through $N$ such that:

-   $d_i\in S$ for all $i\ (1\leq i \leq N)$, where $d_i$ is the degree of vertex $i$ in $T$.

Input

The input is given from Standard Input in the following format:

```
$N$ $K$
$S_1$ $\ldots$ $S_K$
```

Output

Print the number, modulo $998244353$, of the conforming trees $T$.

Constraints

-   $2\leq N \leq 2\times 10^5$
-   $1\leq K \leq N-1$
-   $1\leq S_1 < S_2 < \ldots < S_K \leq N-1$
-   All values in the input are integers.

Sample 1 Input

4 2
1 3

Sample 1 Output

4
A tree satisfies the condition if the degree of one vertex is 3 and the others' are 1. Thus, the answer is 4.

Sample 2 Input

10 5
1 2 3 5 6

Sample 2 Output

68521950

Sample 3 Input

100 5
1 2 3 14 15

Sample 3 Output

888770956

Source/Category