9813: ABC265 —— G - 012 Inversion
[Creator : ]
Description
You are given a sequence $A=(A_1,\ldots,A_N)$ of length $N$. Each element is $0$, $1$, or $2$.
Process $Q$ queries in order. Each query is of one of the following kinds:
- `1 L R`: print the inversion number of the sequence $(A_L,\ldots,A_R)$.
- `2 L R S T U`: for each $i$ such that $L\leq i \leq R$, if $A_i$ is $0$, replace it with $S$; if $A_i$ is $1$, replace it with $T$; if $A_i$ is $2$, replace it with $U$.
What is the inversion number? The inversion number of a sequence $B = (B_1, \ldots, B_M)$ is the number of pairs of integers $(i, j)$ $(1 \leq i < j \leq M)$ such that $B_i > B_j$.
Process $Q$ queries in order. Each query is of one of the following kinds:
- `1 L R`: print the inversion number of the sequence $(A_L,\ldots,A_R)$.
- `2 L R S T U`: for each $i$ such that $L\leq i \leq R$, if $A_i$ is $0$, replace it with $S$; if $A_i$ is $1$, replace it with $T$; if $A_i$ is $2$, replace it with $U$.
What is the inversion number? The inversion number of a sequence $B = (B_1, \ldots, B_M)$ is the number of pairs of integers $(i, j)$ $(1 \leq i < j \leq M)$ such that $B_i > B_j$.
Input
Input is given from Standard Input in the following format:
```
$N$ $Q$
$A_1$ $A_2$ $\ldots$ $A_N$
$\rm Query_1$
$\rm Query_2$
$\vdots$
$\rm Query_Q$
```
$\rm Query_i$ denotes the $i$-th query, which is in one of the following formats:
```
$1$ $L$ $R$
```
```
$2$ $L$ $R$ $S$ $T$ $U$
```
```
$N$ $Q$
$A_1$ $A_2$ $\ldots$ $A_N$
$\rm Query_1$
$\rm Query_2$
$\vdots$
$\rm Query_Q$
```
$\rm Query_i$ denotes the $i$-th query, which is in one of the following formats:
```
$1$ $L$ $R$
```
```
$2$ $L$ $R$ $S$ $T$ $U$
```
Output
Print the responses to the queries of the first kind in the given order, separated by newlines.
Constraints
- $1 \leq N \leq 10^5$
- $0 \leq A_i \leq 2$
- $1\leq Q\leq 10^5$
- In each query, $1\leq L \leq R \leq N$.
- In each query of the second kind, $0\leq S,T,U \leq 2$.
- All values in input are integers.
- $0 \leq A_i \leq 2$
- $1\leq Q\leq 10^5$
- In each query, $1\leq L \leq R \leq N$.
- In each query of the second kind, $0\leq S,T,U \leq 2$.
- All values in input are integers.
Sample 1 Input
5 3
2 0 2 1 0
1 2 5
2 2 4 2 1 0
1 2 5
Sample 1 Output
3
4
Initially, A=(2,0,2,1,0).
- In the 1-st query, print the inversion number 3 of (A2,A3,A4,A5)=(0,2,1,0).
- The 2-nd query makes A=(2,2,0,1,0).
- In the 3-rd query, print the inversion number 4 of (A2,A3,A4,A5)=(2,0,1,0).
Sample 2 Input
3 3
0 1 2
1 1 1
2 1 3 0 0 0
1 1 3
Sample 2 Output
0
0