Problem9812--ABC265 —— F - Manhattan Cafe

9812: ABC265 —— F - Manhattan Cafe

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

In an $N$-dimensional space, the Manhattan distance $d(x,y)$ between two points $x=(x_1, x_2, \dots, x_N)$ and $y = (y_1, y_2, \dots, y_N)$ is defined by:

$\displaystyle d(x,y)=\sum_{i=1}^n \vert x_i - y_i \vert.$

A point $x=(x_1, x_2, \dots, x_N)$ is said to be a lattice point if the components $x_1, x_2, \dots, x_N$ are all integers.

You are given lattice points $p=(p_1, p_2, \dots, p_N)$ and $q = (q_1, q_2, \dots, q_N)$ in an $N$-dimensional space.  
How many lattice points $r$ satisfy $d(p,r) \leq D$ and $d(q,r) \leq D$? Find the count modulo $998244353$.

Input

Input is given from Standard Input in the following format:

```
$N$ $D$ 
$p_1$ $p_2$ $\dots$ $p_N$
$q_1$ $q_2$ $\dots$ $q_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 100$
-   $0 \leq D \leq 1000$
-   $-1000 \leq p_i, q_i \leq 1000$
-   All values in input are integers.

Sample 1 Input

1 5
0
3

Sample 1 Output

8
When N=1, we consider points in a one-dimensional space, that is, on a number line.
88 lattice points satisfy the conditions: -2,-1,0,1,2,3,4,5.

Sample 2 Input

3 10
2 6 5
2 1 2

Sample 2 Output

632

Sample 3 Input

10 100
3 1 4 1 5 9 2 6 5 3
2 7 1 8 2 8 1 8 2 8

Sample 3 Output

145428186

Source/Category