Problem9811--ABC265 —— E - Warp

9811: ABC265 —— E - Warp

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Takahashi is at the origin of a two-dimensional plane.  
Takahashi will repeat teleporting $N$ times. In each teleportation, he makes one of the following moves:

-   Move from the current coordinates $(x,y)$ to $(x+A,y+B)$
-   Move from the current coordinates $(x,y)$ to $(x+C,y+D)$
-   Move from the current coordinates $(x,y)$ to $(x+E,y+F)$

There are obstacles on $M$ points $(X_1,Y_1),\ldots,(X_M,Y_M)$ on the plane; he cannot teleport to these coordinates.

How many paths are there resulting from the $N$ teleportations? Find the count modulo $998244353$.

Input

Input is given from Standard Input in the following format:

```
$N$ $M$
$A$ $B$ $C$ $D$ $E$ $F$
$X_1$ $Y_1$
$X_2$ $Y_2$
$\vdots$
$X_M$ $Y_M$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 300$
-   $0 \leq M \leq 10^5$
-   $-10^9 \leq A,B,C,D,E,F \leq 10^9$
-   $(A,B)$, $(C,D)$, and $(E,F)$ are distinct.
-   $-10^9 \leq X_i,Y_i \leq 10^9$
-   $(X_i,Y_i)\neq(0,0)$
-   $(X_i,Y_i)$ are distinct.
-   All values in input are integers.

Sample 1 Input

2 2
1 1 1 2 1 3
1 2
2 2

Sample 1 Output

5

The following 5 paths are possible:

  • (0,0)→(1,1)→(2,3)
  • (0,0)→(1,1)→(2,4)
  • (0,0)→(1,3)→(2,4)
  • (0,0)→(1,3)→(2,5)
  • (0,0)→(1,3)→(2,6)

Sample 2 Input

10 3
-1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000
-1000000000 -1000000000
1000000000 1000000000
-1000000000 1000000000

Sample 2 Output

0

Sample 3 Input

300 0
0 0 1 0 0 1

Sample 3 Output

292172978

Source/Category