Problem9810--ABC265 —— D - Iroha and Haiku (New ABC Edition)

9810: ABC265 —— D - Iroha and Haiku (New ABC Edition)

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is a sequence $A=(A_0,\ldots,A_{N-1})$ of length $N$.  
Determine if there exists a tuple of integers $(x,y,z,w)$ that satisfies all of the following conditions:

-   $0 \leq x < y < z < w \leq N$
-   $A_x + A_{x+1} + \ldots + A_{y-1} = P$
-   $A_y + A_{y+1} + \ldots + A_{z-1} = Q$
-   $A_z + A_{z+1} + \ldots + A_{w-1} = R$

Input

Input is given from Standard Input in the following format:

```
$N$ $P$ $Q$ $R$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$
```

Output

If there exists a tuple that satisfies the conditions, print `Yes`; otherwise, print `No`.

Constraints

-   $3 \leq N \leq 2\times 10^5$
-   $1 \leq A_i \leq 10^9$
-   $1 \leq P,Q,R \leq 10^{15}$
-   All values in input are integers.

Sample 1 Input

10 5 7 5
1 3 2 2 2 3 1 4 3 2

Sample 1 Output

Yes
(x,y,z,w)=(1,3,6,8) satisfies the conditions.

Sample 2 Input

9 100 101 100
31 41 59 26 53 58 97 93 23

Sample 2 Output

No

Sample 3 Input

7 1 1 1
1 1 1 1 1 1 1

Sample 3 Output

Yes

Source/Category