9810: ABC265 —— D - Iroha and Haiku (New ABC Edition)
[Creator : ]
Description
There is a sequence $A=(A_0,\ldots,A_{N-1})$ of length $N$.
Determine if there exists a tuple of integers $(x,y,z,w)$ that satisfies all of the following conditions:
- $0 \leq x < y < z < w \leq N$
- $A_x + A_{x+1} + \ldots + A_{y-1} = P$
- $A_y + A_{y+1} + \ldots + A_{z-1} = Q$
- $A_z + A_{z+1} + \ldots + A_{w-1} = R$
Determine if there exists a tuple of integers $(x,y,z,w)$ that satisfies all of the following conditions:
- $0 \leq x < y < z < w \leq N$
- $A_x + A_{x+1} + \ldots + A_{y-1} = P$
- $A_y + A_{y+1} + \ldots + A_{z-1} = Q$
- $A_z + A_{z+1} + \ldots + A_{w-1} = R$
Input
Input is given from Standard Input in the following format:
```
$N$ $P$ $Q$ $R$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$
```
```
$N$ $P$ $Q$ $R$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$
```
Output
If there exists a tuple that satisfies the conditions, print `Yes`; otherwise, print `No`.
Constraints
- $3 \leq N \leq 2\times 10^5$
- $1 \leq A_i \leq 10^9$
- $1 \leq P,Q,R \leq 10^{15}$
- All values in input are integers.
- $1 \leq A_i \leq 10^9$
- $1 \leq P,Q,R \leq 10^{15}$
- All values in input are integers.
Sample 1 Input
10 5 7 5
1 3 2 2 2 3 1 4 3 2
Sample 1 Output
Yes
(x,y,z,w)=(1,3,6,8) satisfies the conditions.
Sample 2 Input
9 100 101 100
31 41 59 26 53 58 97 93 23
Sample 2 Output
No
Sample 3 Input
7 1 1 1
1 1 1 1 1 1 1
Sample 3 Output
Yes