Problem9787--ABC262 —— E - Red and Blue Graph

9787: ABC262 —— E - Red and Blue Graph

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a simple undirected graph with $N$ vertices and $M$ edges. The vertices are numbered $1, \dots, N$, and the $i$-th $(1 \leq i \leq M)$ edge connects Vertices $U_i$ and $V_i$.

There are $2^N$ ways to paint each vertex red or blue. Find the number, modulo $998244353$, of such ways that satisfy all of the following conditions:

-   There are exactly $K$ vertices painted red.
-   There is an even number of edges connecting vertices painted in different colors.

Input

Input is given from Standard Input in the following format:

```
$N$ $M$ $K$
$U_1$ $V_1$
$\vdots$
$U_M$ $V_M$
```

Output

Print the answer.

Constraints

-   $2 \leq N \leq 2 \times 10^5$
-   $1 \leq M \leq 2 \times 10^5$
-   $0 \leq K \leq N$
-   $1 \leq U_i \lt V_i \leq N \, (1 \leq i \leq M)$
-   $(U_i, V_i) \neq (U_j, V_j) \, (i \neq j)$
-   All values in input are integers.

Sample 1 Input

4 4 2
1 2
1 3
2 3
3 4

Sample 1 Output

2

The following two ways satisfy the conditions.

  • Paint Vertices 1 and 2 red and Vertices 3 and 4 blue.
  • Paint Vertices 3 and 4 red and Vertices 1 and 2 blue.

In either of the ways above, the 2-nd and 3-rd edges connect vertices painted in different colors.

Sample 2 Input

10 10 3
1 2
2 4
1 5
3 6
3 9
4 10
7 8
9 10
5 9
3 4

Sample 2 Output

64

Source/Category