9785: ABC262 —— C - Min Max Pair
[Creator : ]
Description
You are given a sequence $a = (a_1, \dots, a_N)$ of length $N$ consisting of integers between $1$ and $N$.
Find the number of pairs of integers $i, j$ that satisfy all of the following conditions:
- $1 \leq i \lt j \leq N$
- $\min(a_i, a_j) = i$
- $\max(a_i, a_j) = j$
Find the number of pairs of integers $i, j$ that satisfy all of the following conditions:
- $1 \leq i \lt j \leq N$
- $\min(a_i, a_j) = i$
- $\max(a_i, a_j) = j$
Input
Input is given from Standard Input in the following format:
```
$N$
$a_1$ $\ldots$ $a_N$
```
```
$N$
$a_1$ $\ldots$ $a_N$
```
Output
Print the answer.
Constraints
- $2 \leq N \leq 5 \times 10^5$
- $1 \leq a_i \leq N \, (1 \leq i \leq N)$
- All values in input are integers.
- $1 \leq a_i \leq N \, (1 \leq i \leq N)$
- All values in input are integers.
Sample 1 Input
4
1 3 2 4
Sample 1 Output
2
(i,j)=(1,4),(2,3) satisfy the conditions.
Sample 2 Input
10
5 8 2 2 1 6 7 2 9 10
Sample 2 Output
8