9773: ABC260 —— Ex - Colorfulness
[Creator : ]
Description
There are $N$ balls numbered $1$ through $N$. Ball $i$ is painted in Color $a_i$.
For a permutation $P = (P_1, P_2, \dots, P_N)$ of $(1, 2, \dots, N)$, let us define $C(P)$ as follows:
- The number of pairs of adjacent balls with different colors when Balls $P_1, P_2, \dots, P_N$ are lined up in a row in this order.
Let $S_N$ be the set of all permutations of $(1, 2, \dots, N)$. Also, let us define $F(k)$ by:
$\displaystyle F(k) = \left(\sum_{P \in S_N}C(P)^k \right) \bmod 998244353$.
Enumerate $F(1), F(2), \dots, F(M)$.
For a permutation $P = (P_1, P_2, \dots, P_N)$ of $(1, 2, \dots, N)$, let us define $C(P)$ as follows:
- The number of pairs of adjacent balls with different colors when Balls $P_1, P_2, \dots, P_N$ are lined up in a row in this order.
Let $S_N$ be the set of all permutations of $(1, 2, \dots, N)$. Also, let us define $F(k)$ by:
$\displaystyle F(k) = \left(\sum_{P \in S_N}C(P)^k \right) \bmod 998244353$.
Enumerate $F(1), F(2), \dots, F(M)$.
Input
Input is given from Standard Input in the following format:
```
$N$ $M$
$a_1$ $a_2$ $\dots$ $a_N$
```
```
$N$ $M$
$a_1$ $a_2$ $\dots$ $a_N$
```
Output
Print the answers in the following format:
```
$F(1)$ $F(2)$ $\dots$ $F(M)$
```
```
$F(1)$ $F(2)$ $\dots$ $F(M)$
```
Constraints
- $2 \leq N \leq 2.5 \times 10^5$
- $1 \leq M \leq 2.5 \times 10^5$
- $1 \leq a_i \leq N$
- All values in input are integers.
- $1 \leq M \leq 2.5 \times 10^5$
- $1 \leq a_i \leq N$
- All values in input are integers.
Sample 1 Input
3 4
1 1 2
Sample 1 Output
8 12 20 36
Here is the list of all possible pairs of (P,C(P)).
- If P=(1,2,3), then C(P)=1.
- If P=(1,3,2), then C(P)=2.
- If P=(2,1,3), then C(P)=1.
- If P=(2,3,1), then C(P)=2.
- If P=(3,1,2), then C(P)=1.
- If P=(3,2,1), then C(P)=1.
Sample 2 Input
2 1
1 1
Sample 2 Output
0
Sample 3 Input
10 5
3 1 4 1 5 9 2 6 5 3
Sample 3 Output
30481920 257886720 199419134 838462446 196874334