Problem9770--ABC260 —— E - At Least One

9770: ABC260 —— E - At Least One

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given an integer $M$ and $N$ pairs of integers $(A_1, B_1), (A_2, B_2), \dots, (A_N, B_N)$.  
For all $i$, it holds that $1 \leq A_i \lt B_i \leq M$.

A sequence $S$ is said to be a good sequence if the following conditions are satisfied:

-   $S$ is a contiguous subsequence of the sequence $(1,2,3,..., M)$.
-   For all $i$, $S$ contains at least one of $A_i$ and $B_i$.

Let $f(k)$ be the number of possible good sequences of length $k$.  
Enumerate $f(1), f(2), \dots, f(M)$.

Input

Input is given from Standard Input in the following format:

```
$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```

Output

Print the answers in the following format:

```
$f(1)$ $f(2)$ $\dots$ $f(M)$
```

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $2 \leq M \leq 2 \times 10^5$
-   $1 \leq A_i \lt B_i \leq M$
-   All values in input are integers.

Sample 1 Input

3 5
1 3
1 4
2 5

Sample 1 Output

0 1 3 2 1

Here is the list of all possible good sequences.

  • (1,2)
  • (1,2,3)
  • (2,3,4)
  • (3,4,5)
  • (1,2,3,4)
  • (2,3,4,5)
  • (1,2,3,4,5)

Sample 2 Input

1 2
1 2

Sample 2 Output

2 1

Sample 3 Input

5 9
1 5
1 7
5 6
5 8
2 6

Sample 3 Output

0 0 1 2 4 4 3 2 1

Source/Category