9770: ABC260 —— E - At Least One
[Creator : ]
Description
You are given an integer $M$ and $N$ pairs of integers $(A_1, B_1), (A_2, B_2), \dots, (A_N, B_N)$.
For all $i$, it holds that $1 \leq A_i \lt B_i \leq M$.
A sequence $S$ is said to be a good sequence if the following conditions are satisfied:
- $S$ is a contiguous subsequence of the sequence $(1,2,3,..., M)$.
- For all $i$, $S$ contains at least one of $A_i$ and $B_i$.
Let $f(k)$ be the number of possible good sequences of length $k$.
Enumerate $f(1), f(2), \dots, f(M)$.
For all $i$, it holds that $1 \leq A_i \lt B_i \leq M$.
A sequence $S$ is said to be a good sequence if the following conditions are satisfied:
- $S$ is a contiguous subsequence of the sequence $(1,2,3,..., M)$.
- For all $i$, $S$ contains at least one of $A_i$ and $B_i$.
Let $f(k)$ be the number of possible good sequences of length $k$.
Enumerate $f(1), f(2), \dots, f(M)$.
Input
Input is given from Standard Input in the following format:
```
$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
```
$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$
```
Output
Print the answers in the following format:
```
$f(1)$ $f(2)$ $\dots$ $f(M)$
```
```
$f(1)$ $f(2)$ $\dots$ $f(M)$
```
Constraints
- $1 \leq N \leq 2 \times 10^5$
- $2 \leq M \leq 2 \times 10^5$
- $1 \leq A_i \lt B_i \leq M$
- All values in input are integers.
- $2 \leq M \leq 2 \times 10^5$
- $1 \leq A_i \lt B_i \leq M$
- All values in input are integers.
Sample 1 Input
3 5
1 3
1 4
2 5
Sample 1 Output
0 1 3 2 1
Here is the list of all possible good sequences.
- (1,2)
- (1,2,3)
- (2,3,4)
- (3,4,5)
- (1,2,3,4)
- (2,3,4,5)
- (1,2,3,4,5)
Sample 2 Input
1 2
1 2
Sample 2 Output
2 1
Sample 3 Input
5 9
1 5
1 7
5 6
5 8
2 6
Sample 3 Output
0 0 1 2 4 4 3 2 1