9764: ABC199 —— E - Permutation
[Creator : ]
Description
Print the number of sequences $a$ that are permutations of $(1, 2, 3, \dots, N)$ and satisfy the following condition:
- for every integer $i$ such that $1 \le i \le M$, at most $Z_i$ numbers among $a_1, a_2, a_3, \dots, a_{X_i}$ are less than or equal to $Y_i$ .
- for every integer $i$ such that $1 \le i \le M$, at most $Z_i$ numbers among $a_1, a_2, a_3, \dots, a_{X_i}$ are less than or equal to $Y_i$ .
Input
Input is given from Standard Input in the following format:
```
$N$ $M$
$X_1$ $Y_1$ $Z_1$
$X_2$ $Y_2$ $Z_2$
$X_3$ $Y_3$ $Z_3$
$\hspace{23pt} \vdots$
$X_M$ $Y_M$ $Z_M$
```
```
$N$ $M$
$X_1$ $Y_1$ $Z_1$
$X_2$ $Y_2$ $Z_2$
$X_3$ $Y_3$ $Z_3$
$\hspace{23pt} \vdots$
$X_M$ $Y_M$ $Z_M$
```
Output
Print the answer.
Constraints
- $2 \le N \le 18$
- $0 \le M \le 100$
- $1 \le X_i \lt N$
- $1 \le Y_i \lt N$
- $0 \le Z_i \lt N$
- All values in input are integers.
- $0 \le M \le 100$
- $1 \le X_i \lt N$
- $1 \le Y_i \lt N$
- $0 \le Z_i \lt N$
- All values in input are integers.
Sample 1 Input
3 1
2 2 1
Sample 1 Output
4
The four sequences a satisfying the condition are:
- (1,3,2)
- (2,3,1)
- (3,1,2)
- (3,2,1)
(1,2,3) and (2,1,3) violate the condition, since each of them has two numbers less than or equal to 2 among $a_1,a_2$.
Sample 2 Input
5 2
3 3 2
4 4 3
Sample 2 Output
90
Sample 3 Input
18 0
Sample 3 Output
6402373705728000