Problem9763--ABC199 —— D - RGB Coloring 2

9763: ABC199 —— D - RGB Coloring 2

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a simple undirected graph with $N$ vertices and $M$ edges. The vertices are numbered $1$ through $N$, and the edges are numbered $1$ through $M$.  
Edge $i$ connects Vertex $A_i$ and Vertex $B_i$.  
Find the number of ways to paint each vertex in this graph red, green, or blue so that the following condition is satisfied:

-   two vertices directly connected by an edge are always painted in different colors.

Here, it is not mandatory to use all the colors.

Input

Input is given from Standard Input in the following format:

```
$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$A_3$ $B_3$
$\hspace{15pt} \vdots$
$A_M$ $B_M$
```

Output

Print the answer.

Constraints

-   $1 \le N \le 20$
-   $0 \le M \le \frac{N(N - 1)}{2}$
-   $1 \le A_i \le N$
-   $1 \le B_i \le N$
-   The given graph is simple (that is, has no multi-edges and no self-loops).

Sample 1 Input

3 3
1 2
2 3
3 1

Sample 1 Output

6

Let $c_1,c_2,c_3$ be the colors of Vertices 1,2,3 and R, G, B denote red, green, blue, respectively. There are six ways to satisfy the condition:

  • $c_1c_2c_3$= RGB
  • $c_1c_2c_3$= RBG
  • $c_1c_2c_3$= GRB
  • $c_1c_2c_3$= GBR
  • $c_1c_2c_3$= BRG
  • $c_1c_2c_3$= BGR

Sample 2 Input

3 0

Sample 2 Output

27
Since the graph has no edge, we can freely choose the colors of the vertices.

Sample 3 Input

4 6
1 2
2 3
3 4
2 4
1 3
1 4

Sample 3 Output

0

20 0

3486784401

Source/Category