9761: ABC199 —— B - Intersection
[Creator : ]
Description
You are given sequences of length $N$ each: $A = (A_1, A_2, A_3, \dots, A_N)$ and $B = (B_1, B_2, B_3, \dots, B_N)$.
Find the number of integers $x$ satisfying the following condition:
- $A_i \le x \le B_i$ holds for every integer $i$ such that $1 \le i \le N$.
Find the number of integers $x$ satisfying the following condition:
- $A_i \le x \le B_i$ holds for every integer $i$ such that $1 \le i \le N$.
Input
Input is given from Standard Input in the following format:
```
$N$
$A_1$ $A_2$ $A_3$ $\dots$ $A_N$
$B_1$ $B_2$ $B_3$ $\dots$ $B_N$
```
```
$N$
$A_1$ $A_2$ $A_3$ $\dots$ $A_N$
$B_1$ $B_2$ $B_3$ $\dots$ $B_N$
```
Output
Print the answer.
Constraints
- $1 \le N \le 100$
- $1 \le A_i \le B_i \le 1000$
- All values in input are integers.
- $1 \le A_i \le B_i \le 1000$
- All values in input are integers.
Sample 1 Input
2
3 2
7 5
Sample 1 Output
3
x must satisfy both 3≤x≤7 and 2≤x≤5.
There are three such integers: 3, 4, and 5.
There are three such integers: 3, 4, and 5.
Sample 2 Input
3
1 5 3
10 7 3
Sample 2 Output
0
There may be no integer x satisfying the condition.
Sample 3 Input
3
3 2 5
6 9 8
Sample 3 Output
2