9760: ABC199 —— A - Square Inequality
[Creator : ]
Description
You are given integers $A$, $B$, and $C$.
Determine whether $A^2 + B^2 < C^2$ holds.
Determine whether $A^2 + B^2 < C^2$ holds.
Input
Input is given from Standard Input in the following format:
```
$A$ $B$ $C$
```
```
$A$ $B$ $C$
```
Output
If $A^2 + B^2 < C^2$ holds, print `Yes`; otherwise, print `No`.
Constraints
- $0 \le A \le 1000$
- $0 \le B \le 1000$
- $0 \le C \le 1000$
- $A$, $B$, and $C$ are integers.
- $0 \le B \le 1000$
- $0 \le C \le 1000$
- $A$, $B$, and $C$ are integers.
Sample 1 Input
2 2 4
Sample 1 Output
Yes
Since $A^2+B^2=2^2+2^2=8$ and $C^2=4^2=16$, we have $A^2+B^2<C^2$, so we should print Yes.
Sample 2 Input
10 10 10
Sample 2 Output
No
Since $A^2+B^2=10^2+10^2=100$ and $C^2=10^2=100$, we have $A^2+B^2<C^2$ does not hold.
Sample 3 Input
3 4 5
Sample 3 Output
No