Problem9747--ABC197 —— D - Opposite

9747: ABC197 —— D - Opposite

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB  Special Judge

Description

On a two-dimensional coordinate plane where the $\mathrm{x}$ axis points to the right and the $\mathrm{y}$ axis points up, we have a regular $N$-gon with $N$ vertices $p_0, p_1, p_2, \dots, p_{N - 1}$.  
Here, $N$ is guaranteed to be even, and the vertices $p_0, p_1, p_2, \dots, p_{N - 1}$ are in counter-clockwise order.  
Let $(x_i, y_i)$ denotes the coordinates of $p_i$.  
Given $x_0$, $y_0$, $x_{\frac{N}{2}}$, and $y_{\frac{N}{2}}$, find $x_1$ and $y_1$.

Input

Input is given from Standard Input in the following format:

```
$N$
$x_0$ $y_0$
$x_{\frac{N}{2}}$ $y_{\frac{N}{2}}$
```

Output

Print $x_1$ and $y_1$ in this order, with a space in between.  
Your output is considered correct when, for each value printed, the absolute or relative error from our answer is at most $10^{-5}$.

Constraints

-   $4 \le N \le 100$
-   $N$ is even.
-   $0 \le x_0, y_0 \le 100$
-   $0 \le x_{\frac{N}{2}}, y_{\frac{N}{2}} \le 100$
-   $(x_0, y_0) \neq (x_{\frac{N}{2}}, y_{\frac{N}{2}})$
-   All values in input are integers.

Sample 1 Input

4
1 1
2 2

Sample 1 Output

2.00000000000 1.00000000000
We are given $p_0=(1,1)$ and $p_2=(2,2)$.
The fact that $p_0,\ p_1,\ p_2,\  p_3$ form a square and they are in counter-clockwise order uniquely determines the coordinates of the other vertices, as follows:
  • $p_1=(2,1)$
  • $p_3=(1,2)$

Sample 2 Input

6
5 3
7 4

Sample 2 Output

5.93301270189 2.38397459622

Source/Category