Problem9746--ABC197 —— C - ORXOR

9746: ABC197 —— C - ORXOR

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given is a number sequence $A$ of length $N$.  
Let us divide this sequence into one or more non-empty contiguous intervals.  
Then, for each of these intervals, let us compute the bitwise $\mathrm{OR}$ of the numbers in it.  
Find the minimum possible value of the bitwise $\mathrm{XOR}$ of the values obtained in this way.

What is bitwise $\mathrm{OR}$?

The bitwise $\mathrm{OR}$ of integers $A$ and $B$, $A\ \mathrm{OR}\ B$, is defined as follows:

-   When $A\ \mathrm{OR}\ B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if at least one of $A$ and $B$ is $1$, and $0$ otherwise.

For example, we have $3\ \mathrm{OR}\ 5 = 7$ (in base two: $011\ \mathrm{OR}\ 101 = 111$).  
Generally, the bitwise $\mathrm{OR}$ of $k$ integers $p_1, p_2, p_3, \dots, p_k$ is defined as $(\dots ((p_1\ \mathrm{OR}\ p_2)\ \mathrm{OR}\ p_3)\ \mathrm{OR}\ \dots\ \mathrm{OR}\ p_k)$. We can prove that this value does not depend on the order of $p_1, p_2, p_3, \dots p_k$.

What is bitwise $\mathrm{XOR}$?

The bitwise $\mathrm{XOR}$ of integers $A$ and $B$, $A\ \mathrm{XOR}\ B$, is defined as follows:

-   When $A\ \mathrm{XOR}\ B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if exactly one of $A$ and $B$ is $1$, and $0$ otherwise.

For example, we have $3\ \mathrm{XOR}\ 5 = 6$ (in base two: $011\ \mathrm{XOR}\ 101 = 110$).  
Generally, the bitwise $\mathrm{XOR}$ of $k$ integers $p_1, p_2, p_3, \dots, p_k$ is defined as $(\dots ((p_1\ \mathrm{XOR}\ p_2)\ \mathrm{XOR}\ p_3)\ \mathrm{XOR}\ \dots\ \mathrm{XOR}\ p_k)$. We can prove that this value does not depend on the order of $p_1, p_2, p_3, \dots p_k$.

Input

Input is given from Standard Input in the following format:

```
$N$
$A_1$ $A_2$ $A_3$ $\dots$ $A_N$
```

Output

Print the answer.

Constraints

-   $1 \le N \le 20$
-   $0 \le A_i \lt 2^{30}$
-   All values in input are integers.

Sample 1 Input

3
1 5 7

Sample 1 Output

2
If we divide [1,5,7] into [1,5] and [7], their bitwise ORORs are 5 and 7, whose XORXOR is 2.
It is impossible to get a smaller result, so we print 2.

Sample 2 Input

3
10 10 10

Sample 2 Output

0
We should divide this sequence into [10] and [10,10].

Sample 3 Input

4
1 3 3 1

Sample 3 Output

0
We should divide this sequence into [1,3] and [3,1].

Source/Category