9742: ABC196 —— E - Filters
[Creator : ]
Description
Given are integer sequences $A = (a_1, a_2, \dots, a_N)$, $T = (t_1, t_2, \dots, t_N)$, and $X = (x_1, x_2, \dots, x_Q)$.
Let us define $N$ functions $f_1(x), f_2(x), \dots, f_N(x)$ as follows:
$f_i(x) = \begin{cases} x + a_i & (t_i = 1)\\ \max(x, a_i) & (t_i = 2)\\ \min(x, a_i) & (t_i = 3)\\ \end{cases}$
For each $i = 1, 2, \dots, Q$, find $f_N( \dots f_2(f_1(x_i)) \dots )$.
Let us define $N$ functions $f_1(x), f_2(x), \dots, f_N(x)$ as follows:
$f_i(x) = \begin{cases} x + a_i & (t_i = 1)\\ \max(x, a_i) & (t_i = 2)\\ \min(x, a_i) & (t_i = 3)\\ \end{cases}$
For each $i = 1, 2, \dots, Q$, find $f_N( \dots f_2(f_1(x_i)) \dots )$.
Input
Input is given from Standard Input in the following format:
```
$N$
$a_1$ $t_1$
$a_2$ $t_2$
$\vdots$
$a_N$ $t_N$
$Q$
$x_1$ $x_2$ $\cdots$ $x_Q$
```
```
$N$
$a_1$ $t_1$
$a_2$ $t_2$
$\vdots$
$a_N$ $t_N$
$Q$
$x_1$ $x_2$ $\cdots$ $x_Q$
```
Output
Print $Q$ lines. The $i$-th line should contain $f_N( \dots f_2(f_1(x_i)) \dots )$.
Constraints
- All values in input are integers.
- $1 ≤ N ≤ 2 \times 10^5$
- $1 ≤ Q ≤ 2 \times 10^5$
- $|a_i| ≤ 10^9$
- $1 ≤ t_i ≤ 3$
- $|x_i| ≤ 10^9$
- $1 ≤ N ≤ 2 \times 10^5$
- $1 ≤ Q ≤ 2 \times 10^5$
- $|a_i| ≤ 10^9$
- $1 ≤ t_i ≤ 3$
- $|x_i| ≤ 10^9$
Sample 1 Input
3
-10 2
10 1
10 3
5
-15 -10 -5 0 5
Sample 1 Output
0
0
5
10
10
We have $f_1(x)$=max(x,−10), $f_2(x)$=x+10, $f_3(x)$=min(x,10), thus:
- $f_3(f_2(f_1(−15)))=0$
- $f_3(f_2(f_1(−10)))=0$
- $f_3(f_2(f_1(−5)))=5$
- $f_3(f_2(f_1(0)))=10$
- $f_3(f_2(f_1(5)))=10$