9729: ABC194 —— E - Mex Min
[Creator : ]
Description
Let us define $\mathrm{mex}(x_1, x_2, x_3, \dots, x_k)$ as the smallest non-negative integer that does not occur in $x_1, x_2, x_3, \dots, x_k$.
You are given an integer sequence of length $N$: $A = (A_1, A_2, A_3, \dots, A_N)$.
For each integer $i$ such that $0 \le i \le N - M$, we compute $\mathrm{mex}(A_{i + 1}, A_{i + 2}, A_{i + 3}, \dots, A_{i + M})$. Find the minimum among the results of these $N - M + 1$ computations.
You are given an integer sequence of length $N$: $A = (A_1, A_2, A_3, \dots, A_N)$.
For each integer $i$ such that $0 \le i \le N - M$, we compute $\mathrm{mex}(A_{i + 1}, A_{i + 2}, A_{i + 3}, \dots, A_{i + M})$. Find the minimum among the results of these $N - M + 1$ computations.
Input
Input is given from Standard Input in the following format:
```
$N$ $M$
$A_1$ $A_2$ $A_3$ $\dots$ $A_N$
```
```
$N$ $M$
$A_1$ $A_2$ $A_3$ $\dots$ $A_N$
```
Output
Print the answer.
Constraints
- $1 \le M \le N \le 1.5 \times 10^6$
- $0 \le A_i \lt N$
- All values in input are integers.
- $0 \le A_i \lt N$
- All values in input are integers.
Sample 1 Input
3 2
0 0 1
Sample 1 Output
1
We have:
- for i=0: mex($A_{i+1},A_{i+2}$)=mex(0,0)=1
- for i=1: mex($A_{i+1},A_{i+2}$)=mex(0,1)=2
Thus, the answer is the minimum among 1 and 2, which is 1.
Sample 2 Input
3 2
1 1 1
Sample 2 Output
0
We have:
- for i=0: mex($A_{i+1},A_{i+2}$)=mex(1,1)=0
- for i=1: mex($A_{i+1},A_{i+2}$)=mex(1,1)=0
Sample 3 Input
3 2
0 1 0
Sample 3 Output
2
We have:
- for i=0: mex($A_{i+1},A_{i+2}$)=mex(0,1)=2
- for i=1: mex($A_{i+1},A_{i+2}$)=mex(1,0)=2
7 3
0 0 1 2 0 1 0
2