9683: ABC187 —— A - Large Digits
[Creator : ]
Description
For an integer $n$, let $S(n)$ be the sum of digits in the decimal notation of $n$. For example, we have $S(123) = 1 + 2 + 3 = 6$.
Given two $3$-digit integers $A$ and $B$, find the greater of $S(A)$ and $S(B)$.
Given two $3$-digit integers $A$ and $B$, find the greater of $S(A)$ and $S(B)$.
Input
Input is given from Standard Input in the following format:
```
$A$ $B$
```
```
$A$ $B$
```
Output
Print the value of the greater of $S(A)$ and $S(B)$.
If these are equal, print $S(A)$.
If these are equal, print $S(A)$.
Constraints
- All values in input are integers.
- $100 \le A, B \le 999$
- $100 \le A, B \le 999$
Sample 1 Input
123 234
Sample 1 Output
9
We have S(123)=1+2+3=6 and S(234)=2+3+4=9, so we should print the greater of these: 9.
Sample 2 Input
593 953
Sample 2 Output
17
Sample 3 Input
100 999
Sample 3 Output
27