Problem9662--ABC182 —— D - Wandering

9662: ABC182 —— D - Wandering

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given is a number sequence $A_1, A_2, A_3, \dots, A_N$, which may contain negative elements.  
On a number line, there is a robot at coordinate $0$. It will do the following actions in order:

-   Move $A_1$ in the positive direction.
-   Move $A_1$ in the positive direction, and then move $A_2$ in the positive direction.
-   Move $A_1$ in the positive direction, then move $A_2$ in the positive direction, and then move $A_3$ in the positive direction.

$\hspace{140pt} \vdots$

-   Move $A_1$ in the positive direction, then move $A_2$ in the positive direction, then move $A_3$ in the positive direction, $\ldots$, $\dots$, and then move $A_N$ in the positive direction.

Find the greatest coordinate occupied by the robot from the beginning to the end of the process.

Input

Input is given from Standard Input in the following format:

```
$N$
$A_1 \hspace{7pt} A_2 \hspace{7pt} A_3 \hspace{5pt} \dots \hspace{5pt} A_N$
```

Output

Print the greatest coordinate occupied by the robot from the beginning to the end of the process.

Constraints

-   $1 \le N \le 200000$
-   $-10^8 \le A_i \le 10^8$
-   All values in input are integers.

Sample 1 Input

3
2 -1 -2

Sample 1 Output

5

The robot moves as follows:

  • Move 2 in the positive direction, to coordinate 2.
  • Move 2 in the positive direction, to coordinate 4. Then move −1 in the positive direction, to coordinate 3.
  • Move 2 in the positive direction, to coordinate 5. Then move −1 in the positive direction, to coordinate 4. Then move −2 in the positive direction, to coordinate 2.

The greatest coordinate occupied during the process is 5, so we should print 5.

Sample 2 Input

5
-2 1 3 -1 -1

Sample 2 Output

2

Sample 3 Input

5
-1000 -1000 -1000 -1000 -1000

Sample 3 Output

0
In this case, the initial coordinate 0 is the greatest coordinate occupied.

Source/Category