Problem9632--ABC258 —— Ex - Odd Steps

9632: ABC258 —— Ex - Odd Steps

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Find the number, modulo $998244353$, of sequences $X$ that satisfy all of the following conditions.

-   Every term in $X$ is a positive odd number.
-   The sum of the terms in $X$ is $S$.
-   The prefix sums of $X$ contain none of $A_1, \dots, A_N$. Formally, if we define $Y_i = X_1 + \dots + X_i$ for each $i$, then $Y_i \neq A_j$ holds for all integers $i$ and $j$ such that $1 \leq i \leq |X|$ and $1 \leq j \leq N$.

Input

Input is given from Standard Input in the following format:

```
$N$ $S$
$A_1$ $\ldots$ $A_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 10^5$
-   $1 \leq A_1 \lt A_2 \lt \dots \lt A_N \lt S \leq 10^{18}$
-   All values in input are integers.

Sample 1 Input

3 7
2 4 5

Sample 1 Output

3

The following three sequences satisfy the conditions.

  • (1,5,1)
  • (3,3,1)
  • (7)

Sample 2 Input

5 60
10 20 30 40 50

Sample 2 Output

37634180

Sample 3 Input

10 1000000000000000000
1 2 4 8 16 32 64 128 256 512

Sample 3 Output

75326268

Source/Category