Problem9613--ABC247 —— E - Max Min

9613: ABC247 —— E - Max Min

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a number sequence $A = (A_1, A_2, \dots, A_N)$ of length $N$ and integers $X$ and $Y$. Find the number of pairs of integers $(L, R)$ satisfying all the conditions below.

-   $1 \leq L \leq R \leq N$
-   The maximum value of $A_L, A_{L+1}, \dots, A_R$ is $X$, and the minimum is $Y$.

Input

Input is given from Standard Input in the following format:

```
$N$ $X$ $Y$
$A_1$ $A_2$ $\dots$ $A_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $1 \leq A_i \leq 2 \times 10^5$
-   $1 \leq Y \leq X \leq 2 \times 10^5$
-   All values in input are integers.

Sample 1 Input

4 3 1
1 2 3 1

Sample 1 Output

4
4 pairs satisfy the conditions: (L,R)=(1,3),(1,4),(2,4),(3,4).

Sample 2 Input

5 2 1
1 3 2 4 1

Sample 2 Output

0
No pair (L,R) satisfies the condition.

Sample 3 Input

5 1 1
1 1 1 1 1

Sample 3 Output

15
It may hold that X=Y.

10 8 1
2 7 1 8 2 8 1 8 2 8

36

Source/Category