Problem9603--ABC246 —— C - Coupon

9603: ABC246 —— C - Coupon

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There are $N$ items in a shop. For each $i = 1, 2, \ldots, N$, the price of the $i$-th item is $A_i$ yen (the currency of Japan).

Takahashi has $K$ coupons.  
Each coupon can be used on one item. You can use any number of coupons, possibly zero, on the same item. Using $k$ coupons on an item with a price of $a$ yen allows you to buy it for $\max\lbrace a - kX, 0\rbrace$ yen.

Print the minimum amount of money Takahashi needs to buy all the items.

Input

Input is given from Standard Input in the following format:

```
$N$ $K$ $X$
$A_1$ $A_2$ $\ldots$ $A_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $1 \leq K, X \leq 10^9$
-   $1 \leq A_i \leq 10^9$
-   All values in input are integers.

Sample 1 Input

5 4 7
8 3 10 5 13

Sample 1 Output

12

By using 1 coupon on the 1-st item, 1 coupon on the 3-rd item, and 2 coupons on the 5-th item, Takahashi can:

  • buy the 1-st item for max{$A_1$−X,0}=1 yen,
  • buy the 2-nd item for max{$A_2$,0}=3 yen,
  • buy the 3-rd item for max{$A_3$−X,0}=3 yen,
  • buy the 4-th item for max{$A_4$,0}=5 yen,
  • buy the 5-th item for max{$A_5$−2X,0}=0 yen,

for a total of 1+3+3+5+0=12 yen, which is the minimum possible.

Sample 2 Input

5 100 7
8 3 10 5 13

Sample 2 Output

0

Sample 3 Input

20 815 60
2066 3193 2325 4030 3725 1669 1969 763 1653 159 5311 5341 4671 2374 4513 285 810 742 2981 202

Sample 3 Output

112

Source/Category