9596: ABC245 —— D - Polynomial division
[Creator : ]
Description
We have a polynomial of degree $N$, $A(x)=A_Nx^N+A_{N-1}x^{N-1}+\cdots +A_1x+A_0$,
and another of degree $M$, $B(x)=B_Mx^M+B_{M-1}x^{M-1}+\cdots +B_1x+B_0$.
Here, each coefficient of $A(x)$ and $B(x)$ is an integer whose absolute value is at most $100$, and the leading coefficients are not $0$.
Also, let the product of them be $C(x)=A(x)B(x)=C_{N+M}x^{N+M}+C_{N+M-1}x^{N+M-1}+\cdots +C_1x+C_0$.
Given $A_0,A_1,\ldots, A_N$ and $C_0,C_1,\ldots, C_{N+M}$, find $B_0,B_1,\ldots, B_M$.
Here, the given inputs guarantee that there is a unique sequence $B_0, B_1, \ldots, B_M$ that satisfies the given conditions.
and another of degree $M$, $B(x)=B_Mx^M+B_{M-1}x^{M-1}+\cdots +B_1x+B_0$.
Here, each coefficient of $A(x)$ and $B(x)$ is an integer whose absolute value is at most $100$, and the leading coefficients are not $0$.
Also, let the product of them be $C(x)=A(x)B(x)=C_{N+M}x^{N+M}+C_{N+M-1}x^{N+M-1}+\cdots +C_1x+C_0$.
Given $A_0,A_1,\ldots, A_N$ and $C_0,C_1,\ldots, C_{N+M}$, find $B_0,B_1,\ldots, B_M$.
Here, the given inputs guarantee that there is a unique sequence $B_0, B_1, \ldots, B_M$ that satisfies the given conditions.
Input
Input is given from Standard Input in the following format:
```
$N$ $M$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$ $A_N$
$C_0$ $C_1$ $\ldots$ $C_{N+M-1}$ $C_{N+M}$
```
```
$N$ $M$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$ $A_N$
$C_0$ $C_1$ $\ldots$ $C_{N+M-1}$ $C_{N+M}$
```
Output
Print the $M+1$ integers $B_0,B_1,\ldots, B_M$ in one line, with spaces in between.
Constraints
- $1 \leq N < 100$
- $1 \leq M < 100$
- $|A_i| \leq 100$
- $|C_i| \leq 10^6$
- $A_N \neq 0$
- $C_{N+M} \neq 0$
- There is a unique sequence $B_0, B_1, \ldots, B_M$ that satisfies the conditions given in the statement.
- $1 \leq M < 100$
- $|A_i| \leq 100$
- $|C_i| \leq 10^6$
- $A_N \neq 0$
- $C_{N+M} \neq 0$
- There is a unique sequence $B_0, B_1, \ldots, B_M$ that satisfies the conditions given in the statement.
Sample 1 Input
1 2
2 1
12 14 8 2
Sample 1 Output
6 4 2
For $A(x)=x+2$ and $B(x)=2x^2+4x+6$, we have $C(x)=A(x)B(x)=(x+2)(2x^2+4x+6)=2x^3+8x^2+14x+12$, so $B(x)=2x^2+4x+6$ satisfies the given conditions. Thus, $B_0=6,\ B_1=4,\ B_2=2$ should be printed in this order, with spaces in between.
Sample 2 Input
1 1
100 1
10000 0 -1
Sample 2 Output
100 -1
We have $A(x)=x+100,\ C(x)=−x^2+10000$, for which $B(x)=−x+100$ satisfies the given conditions. Thus, 100, -1 should be printed in this order, with spaces in between.