Problem9592--ABC244 —— Ex - Linear Maximization

9592: ABC244 —— Ex - Linear Maximization

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

There is a set $S$ of points on a two-dimensional plane. $S$ is initially empty.

For each $i = 1, 2, \dots, Q$ in this order, process the following query.

-   You are given integers $X_i, Y_i, A_i$, and $B_i$. Add point $(X_i, Y_i)$ to $S$, and then find $\displaystyle \max_{(x,y) \in S}\left\{A_ix + B_iy\right\}$.

Input

Input is given from Standard Input in the following format:

```
$Q$
$X_1$ $Y_1$ $A_1$ $B_1$
$X_2$ $Y_2$ $A_2$ $B_2$
$\vdots$
$X_Q$ $Y_Q$ $A_Q$ $B_Q$
```

Output

Print $Q$ lines. The $i$-th line should contain the answer for the $i$-th query.

Constraints

-   All values in input are integers.
-   $1≤Q≤2 \times 10^5$
-   $|X_i|, |Y_i|, |A_i|, |B_i| ≤10^9$
-   If $i ≠ j$, then $(X_i, Y_i) ≠ (X_j, Y_j)$.

Sample 1 Input

4
1 0 -1 -1
0 1 2 0
-1 0 1 1
0 -1 1 -2

Sample 1 Output

-1
2
1
2
  • When i=1: add point (1,0) to S, then it will become S={(1,0)}. For (x,y)=(1,0), we have −x−y=−1, which is the maximum.
  • When i=2: add point (0,1) to S, then it will become S={(0,1),(1,0)}. For (x,y)=(1,0), we have 2x=2, which is the maximum.
  • When i=3: add point (−1,0) to S, then it will become S={(−1,0),(0,1),(1,0)}. For (x,y)=(1,0) or (x,y)=(0,1), we have x+y=1, which is the maximum.
  • When i=4: add point (0,−1) to S, then it will become S={(−1,0),(0,−1),(0,1),(1,0)}. For (x,y)=(0,−1), we have x−2y=2, which is the maximum.

Sample 2 Input

9
-1 4 -8 -2
9 -9 -7 7
4 1 6 7
-4 -1 -4 -5
-9 3 -2 -6
-1 0 -8 5
-8 -5 0 0
8 3 0 -4
2 -5 2 5

Sample 2 Output

0
35
31
21
36
87
0
36
31

Source/Category