Problem9573--ABC242 —— E - (∀x∀)

9573: ABC242 —— E - (∀x∀)

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Solve the following problem for $T$ test cases.

Given an integer $N$ and a string $S$, find the number of strings $X$ that satisfy all of the conditions below, modulo $998244353$.

-   $X$ is a string of length $N$ consisting of uppercase English letters.
-   $X$ is a palindrome.
-   $X \le S$ in lexicographical order.
    -   That is, $X=S$ or $X$ is lexicographically smaller than $S$.

Input

Input is given from Standard Input in the following format:

```
$T$
$\mathrm{case}_1$
$\mathrm{case}_2$
$\vdots$
$\mathrm{case}_T$
```

Here, $\mathrm{case}_i$ represents the $i$\-th test case.

Each test case is in the following format:

```
$N$
$S$
```

Output

Print $T$ lines. The $i$-th line should contain the answer for the $i$-th test case as an integer.

Constraints

-   $1 \le T \le 250000$
-   $N$ is an integer between $1$ and $10^6$ (inclusive).
-   In a single input, the sum of $N$ over the test cases is at most $10^6$.
-   $S$ is a string of length $N$ consisting of uppercase English letters.

Sample 1 Input

5
3
AXA
6
ABCZAZ
30
QWERTYUIOPASDFGHJKLZXCVBNMQWER
28
JVIISNEOXHSNEAAENSHXOENSIIVJ
31
KVOHEEMSOZZASHENDIGOJRTJVMVSDWW

Sample 1 Output

24
29
212370247
36523399
231364016

This input contains five test cases.

Test case #1:
The 24 strings satisfying the conditions are AAA, ABA, ACA..., AXA.

Test case #2:
S may not be a palindrome.

Test case #3:
Be sure to find the count modulo 998244353.

Source/Category