Problem9564--ABC241 —— D - Sequence Query

9564: ABC241 —— D - Sequence Query

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have an empty sequence $A$.  
Given $Q$ queries, process them in order.  
Each query is of one of the following three types.

-   `1 x` : Insert $x$ to $A$.
    
-   `2 x k` : Among the elements of $A$ that are less than or equal to $x$, print the $k$-th largest value. ($k$ is no more than $\bf{5}$)  
    If there are less than $k$ elements of $A$ that are less than or equal to $x$, then print `-1`.
    
-   `3 x k` : Among the elements of $A$ that are greater than or equal to $x$, print the $k$-th smallest value. ($k$ is no more than $\bf{5}$)  
    If there are less than $k$ elements of $A$ that are greater than or equal to $x$, then print `-1`.

Input

Input is given from Standard Input in the following format:

```
$Q$
$\text{query}_1$
$\text{query}_2$
$\vdots$
$\text{query}_Q$
```

In the $i$-th query $\text{query}_i$, the type of query $c_i$ (which is either $1, 2$, or $3$) is given first.  
If $c_i=1$, then $x$ is additionally given; if $c_i=2, 3$, then $x$ and $k$ are additionally given.

In other words, each query is given in one of the following three formats:

```
$1$ $x$
```
```
$2$ $x$ $k$
```
```
$3$ $x$ $k$
```

Output

Print $q$ lines, where $q$ is the number of queries such that $c_i=2,3$.  
The $j$-th line $(1\leq j\leq q)$ should contain the answer for the $j$-th such query.

Constraints

-   $1\leq Q \leq 2\times 10^5$
-   $1\leq x\leq 10^{18}$
-   $1\leq k\leq 5$
-   All values in input are integers.

Sample 1 Input

11
1 20
1 10
1 30
1 20
3 15 1
3 15 2
3 15 3
3 15 4
2 100 5
1 1
2 100 5

Sample 1 Output

20
20
30
-1
-1
1
After query$_{1,2,3,4}$ have been processed, we have A=(20,10,30,20).
For query$_{5,6,7}$, the elements of A greater than or equal to 15 are (20,30,20).
The 1-st smallest value of them is 20; the 2-nd is 20; the 3-rd is 30.

Source/Category