9558: ABC240 —— F - Sum Sum Max
[Creator : ]
Description
There are integer sequences $A, B, C$ of length $M$ each.
$C$ is represented by integers $x_1, \dots, x_N, y_1, \dots, y_N$. The first $y_1$ terms of $C$ are $x_1$, the subsequent $y_2$ terms are $x_2$, $\ldots$, the last $y_N$ terms are $x_N$.
$B$ is defined by $B_i = \sum_{k = 1}^i C_k \, (1 \leq i \leq M)$.
$A$ is defined by $A_i = \sum_{k = 1}^i B_k \, (1 \leq i \leq M)$.
Find the maximum value among $A_1, \dots, A_M$.
You will be given $T$ test cases to solve.
$C$ is represented by integers $x_1, \dots, x_N, y_1, \dots, y_N$. The first $y_1$ terms of $C$ are $x_1$, the subsequent $y_2$ terms are $x_2$, $\ldots$, the last $y_N$ terms are $x_N$.
$B$ is defined by $B_i = \sum_{k = 1}^i C_k \, (1 \leq i \leq M)$.
$A$ is defined by $A_i = \sum_{k = 1}^i B_k \, (1 \leq i \leq M)$.
Find the maximum value among $A_1, \dots, A_M$.
You will be given $T$ test cases to solve.
Input
Input is given from Standard Input in the following format:
```
$T$
$\mathrm{case}_1$
$\vdots$
$\mathrm{case}_T$
```
Each case is in the following format:
```
$N$ $M$
$x_1$ $y_1$
$\vdots$
$x_N$ $y_N$
```
```
$T$
$\mathrm{case}_1$
$\vdots$
$\mathrm{case}_T$
```
Each case is in the following format:
```
$N$ $M$
$x_1$ $y_1$
$\vdots$
$x_N$ $y_N$
```
Output
Print $T$ lines. The $i$-th line $(1 \leq i \leq T)$ should contain the answer to the $i$-th test case.
Constraints
- $1 \leq T \leq 2 \times 10^5$
- $1 \leq N \leq 2 \times 10^5$
- The sum of $N$ in a single file is at most $2 \times 10^5$.
- $1 \leq M \leq 10^9$
- $|x_i| \leq 4 \, (1 \leq i \leq N)$
- $y_i \gt 0 \, (1 \leq i \leq N)$
- $\sum_{k = 1}^N y_k = M$
- All values in input are integers.
- $1 \leq N \leq 2 \times 10^5$
- The sum of $N$ in a single file is at most $2 \times 10^5$.
- $1 \leq M \leq 10^9$
- $|x_i| \leq 4 \, (1 \leq i \leq N)$
- $y_i \gt 0 \, (1 \leq i \leq N)$
- $\sum_{k = 1}^N y_k = M$
- All values in input are integers.
Sample 1 Input
3
3 7
-1 2
2 3
-3 2
10 472
-4 12
1 29
2 77
-1 86
0 51
3 81
3 17
-2 31
-4 65
4 23
1 1000000000
4 1000000000
Sample 1 Output
4
53910
2000000002000000000
In the first test case, we have:
- C=(−1,−1,2,2,2,−3,−3)
- B=(−1,−2,0,2,4,1,−2)
- A=(−1,−3,−3,−1,3,4,2)
Thus, the maximum value among $A_1,…,A_M$ is 4.