Problem9546--ABC239 —— B - Integer Division

9546: ABC239 —— B - Integer Division

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given an integer $X$ between $-10^{18}$ and $10^{18}$ (inclusive), print $\left\lfloor \dfrac{X}{10} \right\rfloor$.


Notes
For a real number $x$, $\left\lfloor x \right\rfloor$ denotes "the maximum integer not exceeding $x$". For example, we have $\left\lfloor 4.7 \right\rfloor = 4, \left\lfloor -2.4 \right\rfloor = -3$, and $\left\lfloor 5 \right\rfloor = 5$. (For more details, please refer to the description in the Sample Input and Output.)

Input

Input is given from Standard Input in the following format:

```
$X$
```

Output

Print $\left\lfloor \frac{X}{10} \right\rfloor$. Note that it should be output as an integer.

Constraints

-   $-10^{18} \leq X \leq 10^{18}$
-   All values in input are integers.

Sample 1 Input

47

Sample 1 Output

4
The integers that do not exceed $\frac{47}{10}=4.7$ are all the negative integers, 0,1,2,3, and 4. The maximum integer among them is 4, so we have $⌊\frac{47}{10}⌋=4$.

Sample 2 Input

-24

Sample 2 Output

-3
Since the maximum integer not exceeding $\frac{-24}{10}=-2.4$ is -3, we have $⌊\frac{-24}{10}⌋=-3$.
Note that -2 does not satisfy the condition, as -2 exceeds -2.4.

Sample 3 Input

50

Sample 3 Output

5
The maximum integer that does not exceed $\frac{50}{10}=5$ is 5 itself. Thus, we have $⌊\frac{50}{10}⌋=5$.

-30

3

Sample 4 Input

987654321987654321

Sample 4 Output

98765432198765432
The answer is 98765432198765432. Make sure that all the digits match.

Source/Category