Problem9535--ABC222 —— G - 222

9535: ABC222 —— G - 222

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a sequence $2,22,222,2222,\ldots$, where the $i$\-th term is an $i$\-digit integer whose digits are all $2$.

Where does a multiple of $K$ appear in this sequence for the first time? If the first multiple of $K$ is the $x$-th term of the sequence, print $x$; if there is no multiple of $K$, print `-1`.

Given $T$ cases, solve each of them.

Input

Input is given from Standard Input in the following format:

```
$T$
$\text{case}_1$
$\text{case}_2$
$\vdots$
$\text{case}_T$
```

Each case is in the following format:

```
$K$
```

Output

Print $T$ lines. The $i$-th line should contain the answer for $\text{case}_i$.

Constraints

-   $1 \leq T \leq 200$
-   $1 \leq K \leq 10^8$
-   All values in input are integers.

Sample 1 Input

4
1
7
10
999983

Sample 1 Output

1
6
-1
999982

We have four cases.

  • 2 is a multiple of 1.
  • None of 2,22,222,2222,22222 is a multiple of 7, but 222222 is.
  • None of 2,22,… is a multiple of 10.

Source/Category