9518: ABC220 —— F - Distance Sums 2
[Creator : ]
Description
Given is a tree with $N$ vertices. The vertices are numbered $1,2,\ldots ,N$, and the $i$-th edge is an undirected edge connecting Vertices $u_i$ and $v_i$.
For each integer $i\,(1 \leq i \leq N)$, find $\sum_{j=1}^{N}dis(i,j)$.
Here, $dis(i,j)$ denotes the minimum number of edges that must be traversed to go from Vertex $i$ to Vertex $j$.
For each integer $i\,(1 \leq i \leq N)$, find $\sum_{j=1}^{N}dis(i,j)$.
Here, $dis(i,j)$ denotes the minimum number of edges that must be traversed to go from Vertex $i$ to Vertex $j$.
Input
Input is given from Standard Input in the following format:
```
$N$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_{N-1}$ $v_{N-1}$
```
```
$N$
$u_1$ $v_1$
$u_2$ $v_2$
$\vdots$
$u_{N-1}$ $v_{N-1}$
```
Output
Print $N$ lines.
The $i$-th line should contain $\sum_{j=1}^{N}dis(i,j)$.
The $i$-th line should contain $\sum_{j=1}^{N}dis(i,j)$.
Constraints
- $2 \leq N \leq 2 \times 10^5$
- $1 \leq u_i < v_i \leq N$
- The given graph is a tree.
- All values in input are integers.
- $1 \leq u_i < v_i \leq N$
- The given graph is a tree.
- All values in input are integers.
Sample 1 Input
3
1 2
2 3
Sample 1 Output
3
2
3
We have:
dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3,
dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2,
dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3.
dis(1,1)+dis(1,2)+dis(1,3)=0+1+2=3,
dis(2,1)+dis(2,2)+dis(2,3)=1+0+1=2,
dis(3,1)+dis(3,2)+dis(3,3)=2+1+0=3.
Sample 2 Input
2
1 2
Sample 2 Output
1
1
Sample 3 Input
6
1 6
1 5
1 3
1 4
1 2
Sample 3 Output
5
9
9
9
9
9