Problem9515--ABC220 —— C - Long Sequence

9515: ABC220 —— C - Long Sequence

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a sequence of $N$ positive integers: $A=(A_1,\dots,A_N)$.  
Let $B$ be the concatenation of $10^{100}$ copies of $A$.

Consider summing up the terms of $B$ from left to right. When does the sum exceed $X$ for the first time?  
In other words, find the minimum integer $k$ such that:

$\displaystyle{\sum_{i=1}^{k} B_i \gt X}$.

Input

Input is given from Standard Input in the following format:

```
$N$
$A_1$ $\ldots$ $A_N$
$X$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 10^5$
-   $1 \leq A_i \leq 10^9$
-   $1 \leq X \leq 10^{18}$
-   All values in input are integers.

Sample 1 Input

3
3 5 2
26

Sample 1 Output

8
We have B=(3,5,2,3,5,2,3,5,2,…).
$\sum_{i=2}^8 B_i=28>26$ holds, but the condition is not satisfied when k is 7 or less, so the answer is 8.

Sample 2 Input

4
12 34 56 78
1000

Sample 2 Output

23

Source/Category