9512: ABC344 —— G - Points and Comparison
[Creator : ]
Description
Pay attention to the special input format.
There are $N$ points $(X_i,Y_i)$ in the $xy$-plane. You are given these points in the input.
Also, $Q$ pairs of integers $(A_j,B_j)$ are given.
Define $f(A_j,B_j)$ as the number of indices $i$ satisfying $Y_i \ge A_j \times X_i + B_j$.
Find $\displaystyle \sum^{Q}_{j=1} f(A_j,B_j)$.
Here, $Q$ gets very large, so $(A_j,B_j)$ are not given directly.
Instead, $G_0$, $R_a$, and $R_b$ are given, and $(A_j,B_j)$ are generated as follows:
- First, for $n \ge 0$, define $G_{n+1} = (48271 \times G_n) \mod (2^{31}-1)$.
- For $j=1,2,\dots,Q$, generate $(A_j,B_j)$ as follows:
- $A_j = -R_a + (G_{3j - 2} \mod (2 \times R_a + 1) )$
- $B_j = -R_b + ((G_{3j - 1} \times (2^{31}-1) + G_{3 j}) \mod (2 \times R_b + 1) )$
From this method, it can be shown that $A_j$ and $B_j$ satisfy the following constraints:
- $-R_a \le A_j \le R_a$
- $-R_b \le B_j \le R_b$
There are $N$ points $(X_i,Y_i)$ in the $xy$-plane. You are given these points in the input.
Also, $Q$ pairs of integers $(A_j,B_j)$ are given.
Define $f(A_j,B_j)$ as the number of indices $i$ satisfying $Y_i \ge A_j \times X_i + B_j$.
Find $\displaystyle \sum^{Q}_{j=1} f(A_j,B_j)$.
Here, $Q$ gets very large, so $(A_j,B_j)$ are not given directly.
Instead, $G_0$, $R_a$, and $R_b$ are given, and $(A_j,B_j)$ are generated as follows:
- First, for $n \ge 0$, define $G_{n+1} = (48271 \times G_n) \mod (2^{31}-1)$.
- For $j=1,2,\dots,Q$, generate $(A_j,B_j)$ as follows:
- $A_j = -R_a + (G_{3j - 2} \mod (2 \times R_a + 1) )$
- $B_j = -R_b + ((G_{3j - 1} \times (2^{31}-1) + G_{3 j}) \mod (2 \times R_b + 1) )$
From this method, it can be shown that $A_j$ and $B_j$ satisfy the following constraints:
- $-R_a \le A_j \le R_a$
- $-R_b \le B_j \le R_b$
Input
The input is given from Standard Input in the following format:
```
$N$
$X_1$ $Y_1$
$X_2$ $Y_2$
$\vdots$
$X_N$ $Y_N$
$Q$
$G_0$ $R_a$ $R_b$
```
```
$N$
$X_1$ $Y_1$
$X_2$ $Y_2$
$\vdots$
$X_N$ $Y_N$
$Q$
$G_0$ $R_a$ $R_b$
```
Output
Print the answer as an integer.
Constraints
- All input values are integers.
- $1 \le N \le 5000$
- $1 \le Q \le 10^7$
- $|X_i|, |Y_i| \le 10^8$
- The pairs $(X_i,Y_i)$ are distinct.
- $0 \le G_0 < (2^{31}-1)$
- $0 \le R_a \le 10^8$
- $0 \le R_b \le 10^{16}$
- $1 \le N \le 5000$
- $1 \le Q \le 10^7$
- $|X_i|, |Y_i| \le 10^8$
- The pairs $(X_i,Y_i)$ are distinct.
- $0 \le G_0 < (2^{31}-1)$
- $0 \le R_a \le 10^8$
- $0 \le R_b \le 10^{16}$
Sample 1 Input
7
2 -2
-1 -2
0 1
2 1
-2 2
1 2
0 -1
10
1 5 5
Sample 1 Output
36
This input contains ten questions.
The generated $(A_j,B_j)$ are (−2,4),(0,2),(−4,−2),(4,−5),(3,1),(−1,3),(2,−5),(3,−1),(3,5),(3,−2).
The generated $(A_j,B_j)$ are (−2,4),(0,2),(−4,−2),(4,−5),(3,1),(−1,3),(2,−5),(3,−1),(3,5),(3,−2).