Problem9493--ABC218 —— D - Rectangles

9493: ABC218 —— D - Rectangles

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have $N$ distinct points on a two-dimensional plane, numbered $1,2,\ldots,N$. Point $i$ $(1 \leq i \leq N)$ has the coordinates $(x_i,y_i)$.

How many rectangles are there whose vertices are among the given points and whose edges are parallel to the $x$- or $y$-axis?

Input

Input is given from Standard Input in the following format:

```
$N$
$x_1$ $y_1$
$x_2$ $y_2$
$ \vdots $
$x_N$ $y_N$
```

Output

Print the answer.

Constraints

-   $4 \leq N \leq 2000$
-   $0 \leq x_i, y_i \leq 10^9$
-   $(x_i,y_i) \neq (x_j,y_j)$ $(i \neq j)$
-   All values in input are integers.

Sample 1 Input

6
0 0
0 1
1 0
1 1
2 0
2 1

Sample 1 Output

3
There are three such rectangles:
the rectangle whose vertices are Points 1, 2, 3, 4,
the rectangle whose vertices are Points 1, 2, 5, 6,
and the rectangle whose vertices are Points 3, 4, 5, 6.

Sample 2 Input

4
0 1
1 2
2 3
3 4

Sample 2 Output

0

Sample 3 Input

7
0 1
1 0
2 0
2 1
2 2
3 0
3 2

Sample 3 Output

1

Source/Category