Problem9484--ABC217 —— C - Inverse of Permutation

9484: ABC217 —— C - Inverse of Permutation

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We will call a sequence of length $N$ where each of $1,2,\dots,N$ occurs once as a permutation of length $N$.  
Given a permutation of length $N$, $P = (p_1, p_2,\dots,p_N)$, print a permutation of length $N$, $Q = (q_1,\dots,q_N)$, that satisfies the following condition.

-   For every $i$ $(1 \leq i \leq N)$, the $p_i$-th element of $Q$ is $i$.

It can be proved that there exists a unique $Q$ that satisfies the condition.

Input

Input is given from Standard Input in the following format:

```
$N$
$p_1$ $p_2$ $\dots$ $p_N$
```

Output

Print the sequence $Q$ in one line, with spaces in between.

```
$q_1$ $q_2$ $\dots$ $q_N$
```

Constraints

-   $1 \leq N \leq 2 \times 10^5$
-   $(p_1,p_2,\dots,p_N)$ is a permutation of length $N$ (defined in Problem Statement).
-   All values in input are integers.

Sample 1 Input

3
2 3 1

Sample 1 Output

3 1 2
The permutation Q=(3,1,2) satisfies the condition, as follows.
  • For i=1, we have $p_i=2,q_2=1$.
  • For i=2, we have $p_i=3,q_3=2$.
  • For i=3, we have $p_i=1,q_1=3$.

Sample 2 Input

3
1 2 3

Sample 2 Output

1 2 3
If $p_i=i$ for every $i\ (1≤i≤N)$, we will have P=Q.

Sample 3 Input

5
5 3 2 4 1

Sample 3 Output

5 3 2 4 1

Source/Category