Problem9475--ABC215 —— B - log2(N)

9475: ABC215 —— B - log2(N)

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given a positive integer $N$, find the maximum integer $k$ such that $2^k \le N$.

Input

Input is given from Standard Input in the following format:

```
$N$
```

Output

Print the answer as an integer.

Constraints

$N$ is an integer satisfying $1 \le N \le 10^{18}$.

Sample 1 Input

6

Sample 1 Output

2
  • k=2 satisfies $2^2=4≤6$.
  • For every integer k such that $k≥3,\ 2^k>6$ holds.
Therefore, the answer is k=2.

Sample 2 Input

1

Sample 2 Output

0
Note that $2^0=1$.

Sample 3 Input

1000000000000000000

Sample 3 Output

59

Source/Category