Problem9472--ABC214 —— G - Three Permutations

9472: ABC214 —— G - Three Permutations

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

Given are permutations of $(1, \dots, N)$: $p = (p_1, \dots, p_N)$ and $q = (q_1, \dots, q_N)$.

Find the number, modulo $(10^9 + 7)$, of permutations $r = (r_1, \dots, r_N)$ of $(1, \dots, N)$ such that $r_i \neq p_i$ and $r_i \neq q_i$ for every $i$ $(1 \leq i \leq N)$.

Input

Input is given from Standard Input in the following format:

```
$N$
$p_1$ $\ldots$ $p_N$
$q_1$ $\ldots$ $q_N$
```

Output

Print the answer.

Constraints

-   $1 \leq N \leq 3000$
-   $1 \leq p_i, q_i \leq N$
-   $p_i \neq p_j \, (i \neq j)$
-   $q_i \neq q_j \, (i \neq j)$
-   All values in input are integers.

Sample 1 Input

4
1 2 3 4
2 1 4 3

Sample 1 Output

4
There are four valid permutations: (3,4,1,2), (3,4,2,1), (4,3,1,2), and (4,3,2,1).

Sample 2 Input

3
1 2 3
2 1 3

Sample 2 Output

0
The answer may be 0.

Sample 3 Input

20
2 3 15 19 10 7 5 6 14 13 20 4 18 9 17 8 12 11 16 1
8 12 4 13 19 3 10 16 11 9 1 2 17 6 5 18 7 14 20 15

Sample 3 Output

803776944

Source/Category