Problem9469--ABC214 —— D - Sum of Maximum Weights

9469: ABC214 —— D - Sum of Maximum Weights

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a tree with $N$ vertices numbered $1, 2, \dots, N$.  
The $i$-th edge $(1 \leq i \leq N - 1)$ connects Vertex $u_i$ and Vertex $v_i$ and has a weight $w_i$.

For different vertices $u$ and $v$, let $f(u, v)$ be the greatest weight of an edge contained in the shortest path from Vertex $u$ to Vertex $v$.

Find $\displaystyle \sum_{i = 1}^{N - 1} \sum_{j = i + 1}^N f(i, j)$.

Input

Input is given from Standard Input in the following format:

```
$N$
$u_1$ $v_1$ $w_1$
$\vdots$
$u_{N - 1}$ $v_{N - 1}$ $w_{N - 1}$
```

Output

Print the answer.

Constraints

-   $2 \leq N \leq 10^5$
-   $1 \leq u_i, v_i \leq N$
-   $1 \leq w_i \leq 10^7$
-   The given graph is a tree.
-   All values in input are integers.

Sample 1 Input

3
1 2 10
2 3 20

Sample 1 Output

50
We have f(1,2)=10, f(2,3)=20, and f(1,3)=20, so we should print their sum, or 50.

Sample 2 Input

5
1 2 1
2 3 2
4 2 5
3 5 14

Sample 2 Output

76

Source/Category