Problem9391--ABC205 —— C - POW

9391: ABC205 —— C - POW

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

For a base number $X$, the product of multiplying it $Y$ times is called $X$ to the $Y$-th power and represented as $\text{pow}(X, Y)$. For example, we have $\text{pow}(2,3)=2\times 2\times 2=8$.

Given three integers $A$, $B$, and $C$, compare $\text{pow}(A,C)$ and $\text{pow}(B,C)$ to determine which is greater.

Input

### Input

Input is given from Standard Input in the following format:

```
$A$ $B$ $C$
```

Output

### Output

If $\text{pow}(A,C)&lt; \text{pow}(B,C)$, print `<`; if $\text{pow}(A,C)>\text{pow}(B,C)$, print `>`; if $\text{pow}(A,C)=\text{pow}(B,C)$, print `=`.

Constraints

### Constraints

-   $-10^9 \leq A,B \leq 10^9$
-   $1 \leq C \leq 10^9$
-   All values in input are integers.

Sample 1 Input

3 2 4

Sample 1 Output

>
We have pow(3,4)=81 and pow(2,4)=16.

Sample 2 Input

-7 7 2

Sample 2 Output

=
We have pow(−7,2)=49 and pow(7,2)=49.

Sample 3 Input

-8 6 3

Sample 3 Output

<
We have pow(−8,3)=−512 and pow(6,3)=216.

Source/Category