9391: ABC205 —— C - POW
[Creator : ]
Description
For a base number $X$, the product of multiplying it $Y$ times is called $X$ to the $Y$-th power and represented as $\text{pow}(X, Y)$. For example, we have $\text{pow}(2,3)=2\times 2\times 2=8$.
Given three integers $A$, $B$, and $C$, compare $\text{pow}(A,C)$ and $\text{pow}(B,C)$ to determine which is greater.
Given three integers $A$, $B$, and $C$, compare $\text{pow}(A,C)$ and $\text{pow}(B,C)$ to determine which is greater.
Input
### Input
Input is given from Standard Input in the following format:
```
$A$ $B$ $C$
```
Input is given from Standard Input in the following format:
```
$A$ $B$ $C$
```
Output
### Output
If $\text{pow}(A,C)< \text{pow}(B,C)$, print `<`; if $\text{pow}(A,C)>\text{pow}(B,C)$, print `>`; if $\text{pow}(A,C)=\text{pow}(B,C)$, print `=`.
If $\text{pow}(A,C)< \text{pow}(B,C)$, print `<`; if $\text{pow}(A,C)>\text{pow}(B,C)$, print `>`; if $\text{pow}(A,C)=\text{pow}(B,C)$, print `=`.
Constraints
### Constraints
- $-10^9 \leq A,B \leq 10^9$
- $1 \leq C \leq 10^9$
- All values in input are integers.
- $-10^9 \leq A,B \leq 10^9$
- $1 \leq C \leq 10^9$
- All values in input are integers.
Sample 1 Input
3 2 4
Sample 1 Output
>
We have pow(3,4)=81 and pow(2,4)=16.
Sample 2 Input
-7 7 2
Sample 2 Output
=
We have pow(−7,2)=49 and pow(7,2)=49.
Sample 3 Input
-8 6 3
Sample 3 Output
<
We have pow(−8,3)=−512 and pow(6,3)=216.