Problem9327--ABC298 —— D - Writing a Numeral

9327: ABC298 —— D - Writing a Numeral

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

We have a string $S$. Initially, $S=$ `1`.  
Process $Q$ queries in the following formats in order.

-   `1 x` : Append a digit $x$ at the end of $S$.
-   `2` : Delete the digit at the beginning of $S$.
-   `3` : Print the number represented by $S$ in decimal, modulo $998244353$.

Input

The input is given from Standard Input in the following format:

```
$Q$
$\mathrm{query}_1$
$\vdots$
$\mathrm{query}_Q$
```

Here, $\mathrm{query}_i$ denotes the $i$-th query, which is in one of the following formats:

```
$1$ $x$
```
```
$2$
```
```
$3$
```

Output

Print $q$ lines, where $q$ is the number of queries in the third format. The $i$-th line $(1 \leq i \leq q)$ should correspond to the $i$-th query in the third format.

Constraints

$1 \leq Q \leq 6 \times 10^5$
For each query in the first format, $x \in \{1,2,3,4,5,6,7,8,9\}$.
A query in the second format is given only if $S$ has a length of $2$ or greater.
There is at least one query in the third format.

Sample 1 Input

3
3
1 2
3

Sample 1 Output

1
12
In the first query, S is 1, so you should print 1 modulo 998244353, that is, 1.
In the second query, S becomes 12.
In the third query, S is 12, so you should print 12 modulo 998244353, that is, 12.

Sample 2 Input

3
1 5
2
3

Sample 2 Output

5

Sample 3 Input

11
1 9
1 9
1 8
1 2
1 4
1 4
1 3
1 5
1 3
2
3

Sample 3 Output

0

Source/Category