Problem9310--ABC296 —— C - Gap Existence

9310: ABC296 —— C - Gap Existence

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

You are given a sequence of $N$ numbers: $A=(A_1,\ldots,A_N)$.

Determine whether there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$.

Input

The input is given from Standard Input in the following format:

```
$N$ $X$
$A_1$ $\ldots$ $A_N$
```

Output

Print `Yes` if there is a pair $(i,j)$ with $1\leq i,j \leq N$ such that $A_i-A_j=X$, and `No` otherwise.

Constraints

-   $2 \leq N \leq 2\times 10^5$
-   $-10^9 \leq A_i \leq 10^9$
-   $-10^9 \leq X \leq 10^9$
-   All values in the input are integers.

Sample 1 Input

6 5
3 1 4 1 5 9

Sample 1 Output

Yes
We have $A_6−A_3=9−4=5$.

Sample 2 Input

6 -4
-2 -7 -1 -8 -2 -8

Sample 2 Output

No
There is no pair $(i,j)$ such that $A_i−A_j=−4$.

Sample 3 Input

2 0
141421356 17320508

Sample 3 Output

Yes
We have $A_1−A_1=0$.

Source/Category