Problem9271--ABC295 —— F - substr = S

9271: ABC295 —— F - substr = S

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

You are given a string $S$ consisting of digits and positive integers $L$ and $R$ for each of $T$ test cases. Solve the following problem.

For a positive integer $x$, let us define $f(x)$ as the number of contiguous substrings of the decimal representation of $x$ (without leading zeros) that equal $S$.

For instance, if $S=$ `22`, we have $f(122) = 1$, $f(123) = 0$, $f(226) = 1$, and $f(222) = 2$.

Find $\displaystyle \sum_{k=L}^{R} f(k)$.

Input

### Input

The input is given from Standard Input in the following format, where $\rm{case}_i$ denotes the $i$-th test case:

```
$T$
$\rm{case}_{1}$
$\rm{case}_{2}$
$\vdots$
$\rm{case}_{\it{T}}$
```

Each test case is in the following format:

```
$S$ $L$ $R$
```

Output

### Output

Print $T$ lines in total.  
The $i$-th line should contain an integer representing the answer to the $i$-th test case.

Constraints

### Constraints

-   $1 \le T \le 1000$
-   $S$ is a string consisting of digits whose length is between $1$ and $16$, inclusive.
-   $L$ and $R$ are integers satisfying $1 \le L \le R < 10^{16}$.

Sample 1 Input

6
22 23 234
0295 295 295
0 1 9999999999999999
2718 998244353 9982443530000000
869120 1234567890123456 2345678901234567
2023032520230325 1 9999999999999999

Sample 1 Output

12
0
14888888888888889
12982260572545
10987664021
1
This input contains six test cases.
  • In the first test case, S=22, L=23, R=234.
    • f(122)=f(220)=f(221)=f(223)=f(224)=⋯=f(229)=1.
    • f(222)=2.
    • Thus, the answer is 12.
  • In the second test case, S=0295, L=295, R=295.
    • Note that f(295)=0.

Source/Category