Problem9251--ABC293 —— F - Zero or One

9251: ABC293 —— F - Zero or One

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

Given an integer $N$ not less than $2$, find the number of integers $b$ not less than $2$ such that:

-   when $N$ is written in base $b$, every digit is $0$ or $1$.

Find the answer for $T$ independent test cases.

It can be proved that there is a finite number of desired integers $b$ not less than $2$ under the constraints of this problem.

Input

### Input

The input is given from Standard Input in the following format, where $\mathrm{test}_i$ denotes the $i$-th test case:

```
$T$
$\mathrm{test}_1$
$\mathrm{test}_2$
$\vdots$
$\mathrm{test}_T$
```

Each test case is given in the following format:

```
$N$
```

Output

### Output

Print $T$ lines. For $i = 1, 2, \ldots, T$, the $i$-th line should contain the answer to the $i$-th test case.

Constraints

### Constraints

-   $1 \leq T \leq 1000$
-   $2 \leq N \leq 10^{18}$
-   All values in the input are integers.

Sample 1 Input

3
12
2
36

Sample 1 Output

4
1
5
For the first test case, four $b$'s satisfy the condition in the problem statement: b=2,3,11,12. Indeed, when N=12 is written in base 2,3,11 and 12, it becomes 1100,110,11 and 10, respectively.

Source/Category