Problem9240--ABC292 —— C - Four Variables

9240: ABC292 —— C - Four Variables

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

You are given a positive integer $N$.  
Find the number of quadruples of positive integers $(A,B,C,D)$ such that $AB + CD = N$.

Under the constraints of this problem, it can be proved that the answer is at most $9 \times 10^{18}$.

Input

### Input

The input is given from Standard Input in the following format:

```
$N$
```

Output

### Output

Print the answer.

Constraints

### Constraints

-   $2 \leq N \leq 2 \times 10^5$
-   $N$ is an integer.

Sample 1 Input

4

Sample 1 Output

8
Here are the eight desired quadruples.
  • (A,B,C,D)=(1,1,1,3)
  • (A,B,C,D)=(1,1,3,1)
  • (A,B,C,D)=(1,2,1,2)
  • (A,B,C,D)=(1,2,2,1)
  • (A,B,C,D)=(1,3,1,1)
  • (A,B,C,D)=(2,1,1,2)
  • (A,B,C,D)=(2,1,2,1)
  • (A,B,C,D)=(3,1,1,1)

Sample 2 Input

292

Sample 2 Output

10886

Sample 3 Input

19876

Sample 3 Output

2219958

Source/Category