Problem9234--ABC291 —— E - Find Permutation

9234: ABC291 —— E - Find Permutation

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

There is a length-$N$ sequence $A=(A_1,\ldots,A_N)$ that is a permutation of $1,\ldots,N$.

While you do not know $A$, you know that $A_{X_i} < A_{Y_i}$ for $M$ pairs of integers $(X_i,Y_i)$.

Can $A$ be uniquely determined? If it is possible, find $A$.

Input

### Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$X_1$ $Y_1$
$\vdots$
$X_M$ $Y_M$
```

Output

### Output

If $A$ can be uniquely determined, print `Yes` in the first line. Then, print $A_1,\ldots,A_N$ in the second line, separated by spaces.

If $A$ cannot be uniquely determined, just print `No`.

Constraints

### Constraints

-   $2 \leq N \leq 2\times 10^5$
-   $1 \leq M \leq 2\times 10^5$
-   $1\leq X_i,Y_i \leq N$
-   All values in the input are integers.
-   There is an $A$ consistent with the input.

Sample 1 Input

3 2
3 1
2 3

Sample 1 Output

Yes
3 1 2
We can uniquely determine that A=(3,1,2).

Sample 2 Input

3 2
3 1
3 2

Sample 2 Output

No
Two sequences (2,3,1) and (3,2,1) can be A.

Sample 3 Input

4 6
1 2
1 2
2 3
2 3
3 4
3 4

Sample 3 Output

Yes
1 2 3 4

Source/Category