Problem9232--ABC291 —— C - LRUD Instructions 2

9232: ABC291 —— C - LRUD Instructions 2

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

Takahashi is on a two-dimensional plane. Starting from the origin, he made $N$ moves.

The $N$ moves are represented by a string of length $N$ as described below:

-   Takahashi's coordinates after the $i$-th move are:
    
    -   $(x+1,y)$ if the $i$-th character of $S$ is `R`;
    -   $(x-1,y)$ if the $i$-th character of $S$ is `L`;
    -   $(x,y+1)$ if the $i$-th character of $S$ is `U`; and
    -   $(x,y-1)$ if the $i$-th character of $S$ is `D`,
    
    where $(x,y)$ is his coordinates before the move.
    

Determine if Takahashi visited the same coordinates multiple times in the course of the $N$ moves (including the starting and ending points).

Input

### Input

The input is given from Standard Input in the following format:

```
$N$
$S$
```

Output

### Output

Print `Yes` if Takahashi visited the same coordinates multiple times in the course of the $N$ moves; print `No` otherwise.

Constraints

### Constraints

-   $1 \leq N \leq 2\times 10^5$
-   $N$ is an integer.
-   $S$ is a string of length $N$ consisting of `R`, `L`, `U`, and `D`.

Sample 1 Input

5
RLURU

Sample 1 Output

Yes
Takahashi's coordinates change as follows: (0,0)→(1,0)→(0,0)→(0,1)→(1,1)→(1,2).

Sample 2 Input

20
URDDLLUUURRRDDDDLLLL

Sample 2 Output

No

Source/Category