9226: ABC290 —— E - Make it Palindrome
[Creator : ]
Description
### Problem Statement
For a sequence $X$, let $f(X) =$ (the minimum number of elements one must modify to make $X$ a palindrome).
Given a sequence $A$ of length $N$, find the sum of $f(X)$ over all contiguous subarrays of $A$.
Here, a sequence $X$ of length $m$ is said to be a palindrome if and only if the $i$-th and the $(m+1-i)$-th elements of $X$ are equal for all $1 \le i \le m$.
For a sequence $X$, let $f(X) =$ (the minimum number of elements one must modify to make $X$ a palindrome).
Given a sequence $A$ of length $N$, find the sum of $f(X)$ over all contiguous subarrays of $A$.
Here, a sequence $X$ of length $m$ is said to be a palindrome if and only if the $i$-th and the $(m+1-i)$-th elements of $X$ are equal for all $1 \le i \le m$.
Input
### Input
The input is given from Standard Input in the following format:
```
$N$
$A_1$ $A_2$ $\dots$ $A_N$
```
The input is given from Standard Input in the following format:
```
$N$
$A_1$ $A_2$ $\dots$ $A_N$
```
Output
### Output
Print the answer as an integer.
Print the answer as an integer.
Constraints
### Input
The input is given from Standard Input in the following format:
```
$N$
$A_1$ $A_2$ $\dots$ $A_N$
```
The input is given from Standard Input in the following format:
```
$N$
$A_1$ $A_2$ $\dots$ $A_N$
```
Sample 1 Input
5
5 2 1 2 2
Sample 1 Output
9
- f(5)=0
- f(2)=0
- f(1)=0
- f(2)=0
- f(2)=0
- f(5,2)=1
- f(2,1)=1
- f(1,2)=1
- f(2,2)=0
- f(5,2,1)=1
- f(2,1,2)=0
- f(1,2,2)=1
- f(5,2,1,2)=2
- f(2,1,2,2)=1
- f(5,2,1,2,2)=1