Problem9220--ABC289 —— G - Shopping in AtCoder store

9220: ABC289 —— G - Shopping in AtCoder store

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

Takahashi runs AtCoder store. $N$ customers visit the store, and $M$ items are sold in the store. The motivation of the $i$-th $(1\leq i\leq N)$ customer is $B _ i$. The value of the $j$-th $(1\leq j\leq M)$ item is $C _ j$.

Takahashi sets a price for each item. The $i$-th customer buys one $j$-th item if and only if its price $P _ j$ satisfies:

-   $B _ i+C _ j\geq P _ j$.

For each $j=1,2,\ldots,M$, find the gross sale of the $j$-th item when Takahashi sets the price so that the sale is maximized. The gross sale of the $j$-th item is defined as the product of $P _ j$ and the number of customers that buys the $j$-th item.

Input

### Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$B _ 1$ $B _ 2$ $\ldots$ $B _ N$
$C _ 1$ $C _ 2$ $\ldots$ $C _ M$
```

Output

### Output

Print a line containing the gross sale of the $j$-th item for each $j=1,2,\ldots,M$, separated by spaces.

Constraints

### Constraints

-   $1\leq N\leq2\times10^5$
-   $1\leq M\leq2\times10^5$
-   $0\leq B _ i\leq10^9\quad(1\leq i\leq N)$
-   $0\leq C _ i\leq10^9\quad(1\leq i\leq M)$
-   All values in the input are integers.

Sample 1 Input

5 4
100 200 300 400 500
120 370 470 80

Sample 1 Output

1280 2350 2850 1140
For example, he may set the price of the 1-st item to 320; then the 2-nd, 3-rd, 4-th, and 5-th customers will buy one. The gross sale of the 1-st item will be 1280. Since he cannot make the gross sale of the 1-st item greater than 1280, the 1-st value to be printed is 1280.

Sample 2 Input

4 4
0 2 10 2
13 13 0 4

Sample 2 Output

52 52 10 18
Two customers may have the same motivation. Also, two items may have the same value.

Sample 3 Input

12 15
16 592 222 983 729 338 747 61 451 815 838 281
406 319 305 519 317 590 507 946 365 5 673 478 340 176 2

Sample 3 Output

6280 5466 5382 7410 5454 8120 7290 11680 5870 3670 8950 7000 5620 4608 3655

5 5
1000000000 1000000000 1000000000 1000000000 1000000000
1000000000 1000000000 1000000000 1000000000 1000000000

10000000000 10000000000 10000000000 10000000000 10000000000

Source/Category