Problem9216--ABC289 —— C - Coverage

9216: ABC289 —— C - Coverage

[Creator : ]
Time Limit : 1.000 sec  Memory Limit : 512 MiB

Description

### Problem Statement

There are $M$ sets, called $S_1, S_2, \dots, S_M$, consisting of integers between $1$ and $N$.  
$S_i$ consists of $C_i$ integers $a_{i, 1}, a_{i, 2}, \dots, a_{i, C_i}$.

There are $(2^M-1)$ ways to choose one or more sets from the $M$ sets.  
How many of them satisfy the following condition?

-   For all integers $x$ such that $1 \leq x \leq N$, there is at least one chosen set containing $x$.

Input

### Input

The input is given from Standard Input in the following format:

```
$N$ $M$
$C_1$
$a_{1,1}$ $a_{1,2}$ $\dots$ $a_{1,C_1}$
$C_2$
$a_{2,1}$ $a_{2,2}$ $\dots$ $a_{2,C_2}$
$\vdots$
$C_M$
$a_{M,1}$ $a_{M,2}$ $\dots$ $a_{M,C_M}$
```

Output

### Output

Print the number of ways to choose sets that satisfy the conditions in the Problem Statement.

Constraints

### Constraints

-   $1 \leq N \leq 10$
-   $1 \leq M \leq 10$
-   $1 \leq C_i \leq N$
-   $1 \leq a_{i,1} \lt a_{i,2} \lt \dots \lt a_{i,C_i} \leq N$
-   All values in the input are integers.

Sample 1 Input

3 3
2
1 2
2
1 3
1
2

Sample 1 Output

3
The sets given in the input are }S1={1,2},S2={1,3},S3={2}.
The following three ways satisfy the conditions in the Problem Statement:
  • choosing S1,S2;
  • choosing S1,S2,S3;
  • choosing S2,S3.

Sample 2 Input

4 2
2
1 2
2
1 3

Sample 2 Output

0

Sample 3 Input

6 6
3
2 3 6
3
2 4 6
2
3 6
3
1 5 6
3
1 3 6
2
1 4

Sample 3 Output

18

Source/Category